
HAL Id: hal-01494547
https://hal.sorbonne-universite.fr/hal-01494547

Submitted on 23 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Montgomery reduction within the context of residue
number system arithmetic

Jean-Claude Bajard, Julien Eynard, Nabil Merkiche

To cite this version:
Jean-Claude Bajard, Julien Eynard, Nabil Merkiche. Montgomery reduction within the context of
residue number system arithmetic. Journal of Cryptographic Engineering, 2018, 8 (3), pp.189-200.
�10.1007/s13389-017-0154-9�. �hal-01494547�

https://hal.sorbonne-universite.fr/hal-01494547
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Montgomery Reduction within the Context of Residue
Number System Arithmetic

Jean-Claude Bajard ¨ Julien Eynard ¨ Nabil Merkiche

Keywords Montgomery Reduction ¨ Residue Number
System ¨ Chinese Remainder Theorem ¨ RSA ¨ ECC ¨
Lattice-based Cryptography ¨ Hardware Architecture

1 Introduction

Many of the most common public-key cryptosystems
(RSA, DSA, Diffie-Hellman, etc) involve intensive com-
putations in finite fields/rings. Within such schemes,
modular reduction of large values is a core operation. Its
efficiency is a critical issue for the effectiveness of prac-
tical implementations. In 1985, Peter L. Montgomery
proposed a modular reduction algorithm whose partic-
ularity is to not depend on costly divisions [37]. Since
then, this approach has been widely adopted for imple-
menting many asymmetric cryptographic primitives.

Regarding the efficiency of asymmetric primitives,
Residue Number Systems (RNS) are interesting alter-
natives to classical radix based representations for per-
forming basic arithmetic operations on large values.
However, RNS are of a non-positional nature. Thus,
defining an RNS modular reduction is not straight-
forward. Within such context, Montgomery’s reduction
has turned out to be well appropriate for such represen-
tation. Yet, many issues had to be overcome in order

Jean-Claude Bajard
Sorbonne Universités, UPMC, CNRS, LIP6, Paris, France
E-mail: jean-claude.bajard@lip6.fr

Julien Eynard
ECE Dept., University of Waterloo, Ontario, Canada
E-mail: jeynard@uwaterloo.ca

Nabil Merkiche
DGA Maîtrise de l’Information
E-mail: merkiche.nabil@gmail.com

Acknowledgements: This work has been supported in part by
the French ANR ARRAND 15-CE39-0002-01.

to obtain the state-of-the-art version of RNS modular
reduction. RNS version of Montgomery’s key idea (re-
placing costly divisions by simple shifting by powers
of the radix) relies on an exact division by the prod-
uct of elements of an RNS base. Such exact division
can be handled through a multiplication by a modular
inverse. However, it cannot be performed in the under-
lying RNS base. A possible solution is to use a second
RNS base within which this computation is possible.
Hence, a lot of works dedicated to RNS modular re-
duction have been focused on such kind of structure
involving two RNS bases. In particular, the conversion
procedures between the two bases have always been a
central topic.

A first publication dealing with RNS modular multi-
plication was proposed by Posch and Posch in 1995 [45],
where the use of an auxiliary base was suggested. For
their approach, Posch and Posch needed an RNS base
extension procedure, which is a costly operation. To effi-
ciently achieve it, they proposed to use the classical con-
structive proof of Chinese Remainder Theorem, whose
principle looks like Lagrange’s interpolation. However,
this approach introduced another issue. Their base ex-
tension required a correction which is hardly compati-
ble with RNS representation. To solve this problem, a
floating-point computation was used to make the cor-
rection. In 1998 [5], another result enabled to use in-
teger operations only, by using a Mixed Radix repre-
sentation (relying, this time, on Newton’s like interpo-
lation) for the first conversion and an approach due to
Shenoy-Kumaresan [47] (which involves an extra mod-
ulus) for the second conversion. In 2000, Kawamura
et al. [33] refined Posch and Posch’s method by using
some properties of the RNS base. The floating-point
computation was replaced by approximations involving
some of the most significant bits of residues. Besides,
they proposed a hardware architecture fitting with this



2 Jean-Claude Bajard et al.

kind of approach, called Cox-Rower architecture. It is
well adapted to hardware implementation and is the
most used for practical implementations on embedded
device. In 2001 [6], the question of efficiency for the
RNS Montgomery reduction was taken a step further
by showing how the correction within Lagrange’s like
approach can be skipped. Even though such strategy
is intended to improve overall efficiency of RNS Mont-
gomery reduction/multiplication, it may cause the re-
sult requiring further complete reduction. In 2014 [17],
an improvement of the Cox-Rower architecture was sug-
gested by introducing a second level of Montgomery re-
duction within each RNS unit. This enables to increase
the set of RNS moduli for which good performance can
be reached. As a consequence, cryptosystems involving
larger finite fields can be implemented in the same ar-
chitecture. In 2015 [20], a new approach has been pro-
posed for implementing RNS modular reduction. It does
not involve Montgomery’s reduction but rather resorts
to a hybrid representation, mixing RNS and a classical
radix-based positional system, in order to get Mersenne
like reductions. Beyond the theoretical novelty, this al-
lows to divide by two the area needed for implementing
an RNS Montgomery reduction for specific fields. How-
ever, this last approach is less general than the Mont-
gomery one. Indeed, it requires some property to be
verified between the RNS base and the modulo.

The paper is organised as follows. Section 2 intro-
duces Residue Number Systems (RNS) and details how
the modular Montgomery reduction is adapted to such
kind of representation. In Sec. 3, an overview of the
most common variants of this reduction, which differ by
the way RNS bases are extended, is provided. Section 4
is dedicated to hardware implementations like the clas-
sical Cox-Rover architecture. Section 5 depicts how the
RNS Montgomery reduction can be used within most of
the public key cryptography approaches. Finally, Sec. 6
concludes with an overview of the different kind of pro-
tections the RNS Montgomery reduction offer against
side-channel analysis and fault attacks.

2 Residue Number Systems and Modular
Arithmetic

2.1 Introducing Residue Number Systems

Residue Number Systems are non-positional numeral
systems used to represent integers. They were indepen-
dently introduced in [48] and [27]. Such a system is not
based on a radix representation, but it relies on a set
of pairwise coprime integers B “ pm1, . . . ,mnq, called
“moduli” (their product is usually denoted by M). The

Chinese Remainder Theorem states the existence of a
ring isomorphism Zm1 ˆ . . .ˆ Zmn » Zm1ˆ...ˆmn .

Concretely, knowing a remainder xM “ |x|M “

px mod Mq is strictly equivalent to knowing the n re-
mainders xi “ |x|mi “ px mod miq. Furthermore, the
isomorphism preserves basic modular arithmetic. Given
px, yq in r0,Mq2 and ‹ P t`,ˆu,

|x ‹ y|M Ø p|x1 ‹ y1|m1
, . . . , |xn ‹ yn|mnq .

An important advantage is that computations on resi-
dues are parallel and independent. Since no carry prop-
agation is required between the residues, additions and
multiplications can be performed concurrently. This is
also the case of exact division x

y as long as y is coprime
to M . Indeed, this operation can be replaced by a mul-
tiplication by modular inverses p|y´1|miqiPr1,ns.

Effect on Complexity of Computations: Given a large
interval of integers r0, pq in which some computations
have to be made, it is sufficient to choose an RNS base
B with M ě p to be able to represent all the values
between 0 and p´ 1. Then, operations over large inte-
gers can be replaced by concurrent operations on small
residues (an auxiliary RNS Base could be useful de-
pending of the approach). This is advantageous within
the context of asymmetric cryptography for optimizing
computations in large prime finite fields Fp. By using
an RNS base B with n moduli on r bits (2nr Á p or
log2ppq À nr ), the cost for multiplying two integers x
and y in r0, pq is decreased from Oplog2ppq

2q to Opnr2q
bit operations1. Concurrency features of RNS also en-
able to reduced the time complexity to Opr2q.

Usually, the complexity of an RNS computation is
given in terms of Elementary Modular Multiplications
EMM (e.g. pxi ˆ yi mod miq is 1 EMM). In practice, it is
important to select moduli for which modular reduction
is efficient. Among the zoo of such interesting moduli,
pseudo Mersenne numbers [16] are a common choice
for practical implementations. Such a modulus can be
written like m “ 2r ´ c where c ă 2r{2.

Reducing an integer x (x ă m2) modulo m can be
done with roughly 3

4 EM (Elementary Multiplication of
two r-bit integers; e.g. pxi ˆ yiq is 1 EM). Indeed, by
decomposing x “ x12r ` x0 “ px1, x0q in base 2r, one
simply computes x0 ` x1 ¨ c “ py1, y0q with 1

2 EM and
gets a smaller value, still congruent to x modulo m.
Noticing that y1 ă 2r{2, a last 1

4 EM allows to get y1 ¨c ă
2r. The reduction is then achieved with few additions
and comparisons to m. Furthermore, the cost of these

1 Here, we consider a quadratic multiplication. More generally,
the complexity goes fromOpMulplog2ppqqq toOpnˆMulprqq, where
the best complexities are Mulplog2ppqq P Oplog2ppq log2 log2ppqq
and Mulprq P Opr1`εq, depending of the size of p and r.



Montgomery Reduction within the Context of Residue Number System Arithmetic 3

elementary reductions can be reduced thanks to lazy
reductions (i.e. reducing only when necessary: a sum
of k products can be reduced only once instead of k
successive times).

Nonetheless, the use of RNS for accelerating finite
field computations requires an efficient modular reduc-
tion (modulo p) algorithm. For this purpose, Mont-
gomery’s approach has turned out to be particularly
well appropriate. In further discussions, the residues of
an integer x in B can be denoted by xB. Furthermore,
within a clear context, a computation made modulo M
means that it is performed in RNS, at the residue level.

2.2 RNS Montgomery Modular Reduction

Contrary to Barrett’s algorithm [18], the principle of
Montgomery’s modular reduction goes well with RNS
integer arithmetic. The only divisions occurring within
the process are exact integer divisions, which are easily
doable in RNS.

In original Montgomery’s reduction, the fundamen-
tal tool is the use of an integer b for which modu-
lar reduction and division by b are easy. For instance,
when dealing with binary representation, b is typically a
power of 2. Thus, to compute x mod p with x ă p2 (e.g.
when reducing a product of elements in Fp), the idea is
to add an integer a to x such that (i) x`a is a multiple
of b, (ii) x` a ” x mod p, and (iii) x`a

b is smaller than
2p. Taking a “ p ˆ q with q “ ppx ˆ | ´ p´1|bq mod bq

satisfies the requirements (i) and (ii). When | ´ p´1|b

can be precomputed, q is easily computable. If b is cho-
sen large enough so that x ă bˆp, then (iii) is satisfied
too (x`ab ă 2p).

This approach has been adapted to RNS in [5, 45].
Let B be the underlying RNS base used to represent Fp.
The previous key ideas are transposable in the follow-
ing way. First, by replacing b by M , computing modulo
M is simply achieved by classical RNS computations in
B. Thus, q “ px ˆ | ´ p´1|M q mod M is obtained effi-
ciently by computing at the residue level. Second, the
exact division by M cannot be performed in the base
B. So, an auxiliary base B1, coprime to B, is introduced.
For the computation to be ended in B1, the RNS repre-
sentation of q in B has to be extended towards B1. For
that purpose, a procedure called base extension, and
denoted Bex, is used. Sometimes, such extension can
only provide the residues in B1 of q`kM for some posi-
tive small integer k such that q`kM ď p1`λqM . This
can cause the final result to contain some extra multiple
of p. Basically, one could say the smaller the λ (and so
the k), the costlier the extension procedure. But there
are many refinements that will be reviewed throughout
the paper. Once the result is obtained in the auxiliary

base, it is sent back to the main base B. The size ofM is
usually chosen such that x ăMp. Finally, the result is
px`ppq`kMqq{M and it is expected to be smaller than
p2 ` λqp. Regarding M 1, it has to be large enough to
fully contain the final result. Thus, takingM 1 ą p2`λqp

is sufficient in this case. Finally, Alg. 1 summarizes the
principle of an RNS Montgomery modular reduction.

Remark 1 As in the original reduction algorithm, the
RNS Montgomery reduction of x modulo p provides a
result which is congruent to xM´1 mod p. Thus, the
use of a Montgomery representation is still topical.

Algorithm 1 RnsMRpxpB,B1q, p,B,B1q

Require: coprime RNS bases B, B1, x ă Mp, p2 `
λqp ăM 1 with λ ě 0 related to Bex1.

Ensure: spB,B1q, s ” xM´1 mod p.
1: qB Ð

ˇ

ˇ´xp´1
ˇ

ˇ

M
Ź ‖ in B

2: pqB1 Ð Bex1pqB,B,B1q Ź pq ă p1` λqM

3: tB1 Ð |x` pqp|M 1 Ź ‖ in B1
4: sB1 Ð

ˇ

ˇtM´1
ˇ

ˇ

M 1 Ź ‖ in B1; s ă p2` λqp
5: sB Ð Bex2psB1 ,B1,Bq Ź exact extension
6: return spB,B1q

3 Main Variants of RNS Montgomery
Reduction

The general structure of RNS Montgomery reduction
is given in Alg. 1. In practice, the two base extension
procedures are the costliest parts of the computation.
Different types of extensions can be used in practice,
each one owning pros and cons. The choice of extension
methods within RNS Montgomery reduction really de-
pends on the context. In this section, some of the main
practical variants are reviewed.

3.1 Extensions Based on a Mixed Radix System
(MRS)

Any (ordered) RNS base B “ pm1, . . . ,mnq is asso-
ciated to mixed radix base composed of n elements
p1,m1,m1m2, . . . ,m1 . . .mn´1q. The principle of com-
putation of MRS coefficients from RNS residues [49] is
very similar to Newton’s interpolation, where some kind
of (modular) divided differences are performed. These
coefficients, for an integer x P r0,Mq, are denoted by
x̆B “ px̆1, . . . , x̆nq. They are obtained from residues xB
by inverting the following formula for each mi P B:

x “ x̆1 ` x̆2m1 ` . . .` x̆nm1m2 . . .mn´1 . (1)



4 Jean-Claude Bajard et al.

Consequently, x̆1 “ x1, x̆2 “ |px2 ´ x̆1qm
´1
1 |m2 , and

so on and so forth. Therefore, it is a sequential process
which is contrary to the parallel nature of RNS arith-
metic. Thus, it is a burdensome operation.

MRS is a positional numeral system. Hence, once
the MRS coefficients of two numbers are known, com-
paring them is straightforward. x̆1 is the least signifi-
cant coefficient, while x̆n is the most significant one.

This conversion between RNS and MRS enables a
base extension Bexmrs towards B1. It simply consists in
computing (1) in B1. Despite the bad performance of
such extension, it presents the advantage of providing
an exact extended value, i.e. BexmrspxB,B,B1q always
gives the residues of |x|M in B1.

Montgomery Reduction with MRS Extensions: As pre-
viously noticed, Bexmrs enables to get an exact exten-
sion. It means that λ in Alg. 1 can be set to 0. In other
words, the integer represented by sB1 at line 4 satis-
fies s ă 2p. Furthermore, using Bexmrs for the second
extension enables a comparison to p in order to get
a full reduction. This comparison is simply performed
with the precomputed MRS coefficients of p. The sub-
sequent variant of RNS reduction really sticks to the
original Montgomery reduction with respect to Mont-
gomery factorM . However, using two of such extension
is far from being efficient.

Next, another kind of extension and its use within
RNS reduction are introduced. Despite a better effi-
ciency, these extensions introduce possible “overflows”
which have to be cautiously handled.

3.2 Extensions Based on the CRT

The classical constructive proof of Chinese Remainder
Theorem is based on the following formula, which gives
a way to compute x P r0,Mq from the residues xB:

x “
řn
i“1 |xiM

´1
i |miMi mod M “

řn
i“1 x̃iMi ´ κM .

(2)

In (2),Mi stands for M
mi

, and x̃i for |xiM´1
i |mi . The

integer κ lies in r0, n´ 1s. It is related to the reduction
of the sum modulo M . Formally, it is given by the fol-
lowing formula:

κ “ t 1
M

řn
i“1 x̃iMiu “ t

řn
i“1

x̃i
mi

u . (3)

Computing κ (i.e. reducing modulo M in (2)) is an
issue for getting an exact base extension procedure from
(2). It is challenging to compute it without leaving RNS
representation. Several base extension procedures have
been proposed so far. Their interest depends on the
context.

3.2.1 Fast CRT-Based Extension

Within an appropriate context, computing κ may not
be necessary at all. In this case, the extension denoted
by Bexcrt is a simple matrix-vector product.

BexcrtpxB,B,B1q “ p
řn
i“1 x̃i|Mi|m1 mod m1qm1PB1

“ p|x` κM |m1qm1PB1 , κ P r0, n´ 1s .

(4)

This extension can be used for implementing Bex1.
It provides pq “ q`κM ă nM (i.e. λ “ n´1), because,
by definition of q, one has q ă M . So, sB1 at line 4
satisfies s ă pn ` 1qp. Comparatively to the previous
approach with MRS-based extension where one is able
to get s ă 2p, the result might need to be further re-
duced modulo p. However, the efficiency is improved a
lot. Indeed, the extension remains completely and easily
parallelizable.

Next, the problem is that such base extension can-
not be used for Bex2 which has to be exact. It would
not make sense to obtain the residues of an integer
like s ` κM 1 in base B. Instead of using Bexmrs in this
context, Shenoy and Kumaresan have proposed an effi-
cient way to compute the integer κ related to sB1 [47].
The idea is to add an extra redundant modulus be-
sides B1, denoted by msk, and to invert (2) modulo
msk. This requires to know x mod msk. Then, by hav-
ing msk ě n ą κ, it follows that

|p
řn
i“1 |xiM

´1
i |miMi ´ xqM

´1|msk “ |κ|msk “ κ . (5)

This approach cannot be used for extending q. Indeed, q
is computed modulo M . So, there is no known efficient
way to compute q mod msk. However, Bexsk (which is
basically Bexcrt coupled with computation of (5)) can
be used to extend s towards B1. This extension is exact
and remains more efficient than an MRS-based exten-
sion. The reduction procedure is depicted by Alg. 2.

Algorithm 2 FastRnsMRpxpB,B1,mskq, p,B,B1,mskq

Require: coprime RNS bases B, B1, msk, with x ă

Mp, pn` 1qp ăM 1, msk ě n1.
Ensure: spB,B1,mskq, s ” xM´1 mod p, s ă pn` 1qp.
1: qB Ð

ˇ

ˇ´xp´1
ˇ

ˇ

M
Ź ‖ in B

2: pqpB1,mskq Ð BexcrtpqB,B, pB1;mskqq Ź pq ă nM

3: tpB1,mskq Ð |x` pqp|mskM 1 Ź ‖ in pB1,mskq

4: spB1,mskq Ð
ˇ

ˇtM´1
ˇ

ˇ

mskM 1 Ź ‖ in pB1,mskq

5: pspB,mskq Ð BexcrtpsB1 ,B1, pB,mskqq

6: κÐ |ppsmsk ´ smskq ˆ pM
1q´1|msk

7: sB Ð psB ´ κ|M
1|M Ź ‖ in B

8: return spB,B1,mskq



Montgomery Reduction within the Context of Residue Number System Arithmetic 5

3.2.2 Towards an Exact Reduction Modulo p

Algorithm 3 ExactRnsMRpxpB,B1,m̃q, p,B,B1q

Require: coprime RNS bases B, B1, m̃, with x ăMp,
2p ăM 1, m̃ ě n` 1.

Ensure: spB,B1,m̃q, s “ xpm̃Mq´1 mod p (s P r0, pq).
1: qB Ð

ˇ

ˇ´xp´1
ˇ

ˇ

M
Ź ‖ in B

2: pqpB1,m̃q Ð BexcrtpqB,B, pB1, m̃qq Ź pq ă nM

3: tpB1,m̃q Ð |x` pqp|m̃M 1 Ź ‖ in pB1, m̃q
4: spB1,m̃q Ð

ˇ

ˇtM´1
ˇ

ˇ

m̃M 1 Ź ‖ in pB1, m̃q
5: q̃ Ð | ´ sp´1|m̃

6: sB1 Ð |ps` q̃pqm̃´1|M 1 Ź ‖ in B1
7: psB, s̆B1q Ð BexmrspsB1 ,B1, pB, m̃qq
8: if s̆B1 ě p̆B1 then
9: spB,B1,m̃q Ð spB,B1,m̃q ´ ppB,B1,m̃q

10: end if
11: return spB,B1,m̃q

Within a context where it is required to get a com-
plete reduction modulo p (for instance at the end of
a modular exponentiation), there are some final com-
parisons with p to perform. In such a case, an MRS-
based extension can be used. In order to have only
one comparison to perform despite the use of Bexcrt
as first extension, an efficient solution for reducing s

from r0, pn` 1qpq to r0, 2pq has been proposed in [11].
The principle is to use a second small Montgomery

reduction on s within base B1. To achieve it, an extra
modulus m̃ is introduced, besides B1. If m̃ ě n`1, then
the reduction allows to obtain a result in r0, 2pq as ex-
pected. Moreover, when m̃ is smaller than any modulus
of B1, a base extension from m̃ to B1 is a simple dupli-
cation of the residue. Finally, an MRS-based extension
enables to obtain an exact reduction modulo p through
only one comparison. Alg. 3 implements this technique.
It can be noticed that the Montgomery representation
is now associated to the factor m̃M .

3.2.3 Computational Efficiency of RNS vs.
Multi-precision Modular Arithmetic

For implementing arithmetic in Fp, it can be noticed
that the three previously introduced versions of RNS
Montgomery reduction require two bases B and B1 with
basically M „ M 1 „ p. Thus, both bases are usually
considered to own n moduli each.

The advantage of RNS (comparatively to classical
positional representation) is that the multiplication is
linear in n. More precisely, computing x ˆ y in pB,B1q

is achieved with 2n EMM, whereas computing xˆy with
x, y ă p basically requires n2 EM.2

Asymptotically, the cost of any kind of CRT-based
extension is pn2`Opnqq EMM. Thus, an (efficient) RNS
Montgomery reduction represents p2n2 ` Opnqq EMM.
On the other side, such reduction, when performed in
multi-precision, requires pn2`Opnqq EM, and it is there-
fore a bit more efficient. Consequently, the RNS can
noticeably enhance the efficiency of finite field compu-
tations by using lazy reduction patterns, as often as
possible, in order to take advantage of its efficient mul-
tiplication by minimizing the number of its costly re-
duction. Concretely, using RNS and a lazy reduction to
compute

řk
i“1 aibi mod p would enable a cost reduction

from ppk`1qn2`Oplogpkqnqq EM to p2n2`Opknqq EMM.
With a classical multi-precision computation, the cost
of multiplications is more important than the one of re-
duction (for example with pseudo-Mersenne modulo).
Thus, the effect of a lazy computation is less significant
than for an RNS approach.

4 Towards Efficient Embedded Hardware
Implementations

4.1 Approximated Base Extensions

In prior sections, it has been pointed out that the base
extensions represent the core computations of a modu-
lar reduction. Contrary to MRS-based extensions, the
CRT-based methods have a better compatibility with
RNS properties. They allow to keep a good parallelism
all along the computations. This is at least true for the
sum in (2). Actually, all the difficulty is concentrated in
the computation of the integer κ which, in some variants
of RNS modular reduction, is totally forgotten within
the first extension. However, as the second extension
has to be exact, this problem has to be overcome. In
Alg. 2 for instance, it is necessary to introduce an extra
redundant modulus to solve this issue.

Posch and Posch in 1993 [44] (in the context of a
base extension), and Kawamura et al. in 2000 [33] (in
the context of RNS Montgomery reduction) adopted a
different strategy, by suggesting to compute an approx-
imation of κ. Such approximation is based on (3). The
hardest thing to manage is the rational numbers 1

mi
.

Posch and Posch introduced a floating-point approach
to deal with them. Then, Kawamura et al. used an ap-
proximation which allows to manage only small integer
arithmetic. This is the approach described hereafter.

If r is the bit-size of the moduli, i.e. 2r´1 ă mi ă 2r,
then 1

mi
is approximated by 1

2r . That way, computing

2 by considering a quadratic multiplication.



6 Jean-Claude Bajard et al.

(3) can be achieved by summing the carries beyond 2r

of the sum
řn
i“1 x̃i. Kawamura et al. even go further

by keeping only the h most significant bits of each co-
efficient of x̃i. Hence, the final approximation is given
by (6). This provides an lower bound. It is possible to
correct it (in part) by adding a correcting coefficient α.

κ̃α Ð tα`
řn
i“1

x̃i"pr´hq
2h

u, α P 2´ht0, . . . , 2h ´ 1u

“
`

α2h `
řn
i“1px̃i " pr ´ hqq

˘

" h .
(6)

The parameter α enables a correction of the ap-
proximation in certain cases. More precisely, it is possi-
ble to adjust the parameter h such that the error term
∆ “

řn
i“1p

x̃i
mi
´
x̃i"pr´hq

2h
q lies in r0, 1q. This implies that

κ̃0 is in tκ´1, κu. Hence, when a correction is required,
one chooses αkw P r∆, 1q. However, such correction is
not effective for every RNS number. For instance, if the
value represented by sB1 at line 4 of Alg. 1 satisfies
s ă p1 ´ αkwqM

1, then in this case the correction will
be successful. Such correction is then not possible for
q in B, since it cannot be restricted to an interval like
r0, p1´αqMq for a certain α P r∆, 1q. Thus, Kawamura
et al.’s idea is to compute κ̃0 for the first extension
(i.e. without correction). Thus, the extension denoted
by BexkwpqB,B,B1, α “ 0q will produce pq P tq, q `Mu

which furthermore satisfies pq ă p1 ` ∆qM . However,
this last overflow can be counterbalanced by having
x ă p1´∆qMp.

Finally, a corrected and an uncorrected variant of
Bexkw (i.e. when α “ αkw or α “ 0) can be used within
RNS modular reduction so that the result is guaranteed
to be in r0, 2pq, and that the second base extension is
exact under certain conditions on the moduli of the
RNS bases (see 4.3). The full procedure is given in Alg.
4.

Algorithm 4 KWRnsMRpxpB,B1q, p,B,B1q

Require: coprime RNS bases B, B1, x ă Mpp1 ´∆q,
2p ă p1´ αkwqM

1 with 0 ď ∆ ď αkw ă 1.
Ensure: spB,B1q, s ă 2p, s ” xM´1 mod p.
1: qB Ð

ˇ

ˇ´xp´1
ˇ

ˇ

M
Ź ‖ in B

2: pqB1 Ð BexkwpqB,B,B1, α “ 0q Ź pq ă p1`∆qM

3: tB1 Ð |x` pqp|M 1 Ź ‖ in B1
4: sB1 Ð

ˇ

ˇtM´1
ˇ

ˇ

M 1 Ź ‖ in B1; s ă 2p ă p1´ αkwqM
1

5: sB Ð BexkwpsB1 ,B1,B, α “ αkwq Ź exact extension
6: return spB,B1q

Fig. 1: General design of a Cox-Rower architecture.

4.2 Cox-Rower Architecture

In [33], an architecture dedicated to the implementa-
tion of Alg. 4 is proposed. It is depicted in Fig. 1. n
arithmetic cells, called Rowers, run in parallel. They
are specifically designed to computation patterns like
řn
i“1 aibi mod m for a modulus m over r bits. Thus,

any computation in B or B1 can be run in parallel. Each
Rower implements one channel Zmi of B and another
one, Zm1

i
, belonging to B1. The total number of Row-

ers can be smaller than n, each arithmetic cell being
in charge of more RNS channels, but at the cost of an
increase of computation time. The architecture is then
very flexible and easily scalable.

A specific unit called Cox computes (6) during each
base extension. The second line of (6) shows that this
computation can be executed by a simple h-bit adder.
Each carry over 2h is streamed throughout the Rowers
to trigger a subtraction by M or M 1, according to the
direction of current extension (i.e. B Ñ B1 or B1 Ñ B).

4.3 Double Level of Montgomery Reduction

In the initial proposal of [33], the base extension using
(6) implies choosing moduli close to 2r in order to have
a good approximation of coefficient κ. However, this
consideration can be refined in order to provide a larger
set of usable moduli.

On one hand, efficient reduction by moduli is usu-
ally insured by selecting pseudo Mersenne numbers (
m “ 2r ´ c, c ă 2r{2). This kind of consideration leads
to a set of moduli for which elementary RNS operations
are efficient. On the other hand, in [17] the authors es-
tablish a tight bound over c allowing the use of Kawa-



Montgomery Reduction within the Context of Residue Number System Arithmetic 7

mura’s like extensions. This bound looks like c ď 2r αn
(where α is the correction term in (6)).

Consequently, if 2r αn ą 2r{2, the set of r-bit pseudo
Mersenne moduli may be not sufficient to cover the need
in r-bit moduli which are suitable for Kawamura’s ex-
tension. Thus, a limitation can appear. For example, 2
RNS bases B and B1 with 17-bit moduli can be found
to implement Alg. 4 only for log2ppq up to 506 [28]. It
means that the use of a Cox-Rower architecture with
ALU’s designed for 17-bit pseudo Mersenne moduli can-
not be used to implement computations in finite fields
with characteristic composed of more than 506 bits.

Algorithm 5 Inner Montgomery modular reduction
Require: m “ 2r ´ c, a ď 2r, b ď m.
Ensure: s “ pab2´rq mod m.
1: cÐ ab “ c12r ` c0 Ź c ă m2r

2: q Ð pc0 ˆ | ´m
´1|2r q mod 2r

3: tÐ c` q ˆm “ s12r Ź t ă m2r`1

4: sÐ pt " rq “ s1 Ź s ď 2m, s ” ab2´r mod m

5: if s ě m then
6: sÐ s´m

7: end if
8: return s

A new strategy is proposed in [17]. The goal is to
design new ALU’s for implementing RNS Montgomery
reduction Alg. 4, and which admits more general moduli
than pseudo Mersenne, while guaranteeing an efficient
inner reduction yet. Thus, the idea is to insert a second
level of Montgomery reduction. The elementary reduc-
tions are performed by using Alg. 5. For instance, this
new approach allows to extend the operating range of
a 17-bit Cox-Rower architecture to log2ppq up to 1118

bits [28]. In particular, RSA-1024 algorithm can be im-
plemented in this architecture.

5 Applications of RNS to Asymmetric
Cryptography

5.1 RSA

Using RNS for Modular Exponentiation: Nozaki et al.
[40] used the Montgomery reduction described by Alg.
4 as the fundamental brick of an efficient RNS modu-
lar exponentiation. Then, they proposed to use it for
implementing the RSA scheme by using a Cox-Rower
architecture.

In such kind of approach, RNS representation is only
involved to get an access to the modular exponentiation
based on RNS Montgomery modular multiplier. Thus,

some costly conversions between binary positional sys-
tem and RNS have to be performed at the beginning
and the end of a full procedure encryption+decryption
or signature+verification.

RNS is not only useful for accelerating computa-
tions. Guillermin [30] integrated some leak resistant
arithmetic in such RNS implementation of RSA.

Using RNS as the Main Representation: In [13], the
authors proposed a clever way to get a full RNS imple-
mentation of RSA (Alg. 6 and 7). The modular multi-
plication is based on Alg. 2.

Two RNS bases B and pB1,mskq are required. In or-
der to reach a high throughput, a method is proposed
to avoid any conversion from binary integers to RNS. If
the moduli are over r bits, any string of nˆpr´1q bits is
seen as a set of n residues in B. The integers represented
by these bit strings are smaller than the moduli of B so
that any reduction modulo a modulus mi is not neces-
sary. Thus, these residues represent a certain number x
in r0,Mq. The corresponding residues in pB1,mskq are
obtained through a MRS-based extension.

Except this initial MRS-based extension, the whole
scheme (encryption+decryption) is completely imple-
mented in RNS representation. To achieve that, the
problem of having an incomplete reduction modulo N
(“ pq, the RSA modulus) by using Montgomery reduc-
tion, and in particular Alg. 2, had to be solved.

With public key pa,N “ pˆ qq, an encryption of x
provides y “ xaM mod N ` αN with α an integer in
r0, ns (the factor M is due to the Montgomery repre-
sentation). In this case, the incomplete reduction is not
a problem. Next, by applying the same modular expo-
nentiation algorithm with secret key b, the decryption
would provide yb mod N ` α1N “ xM mod N ` α1N .
Making a last Montgomery modular multiplication by
1 enables to get rid of Montgomery representation, then
providing x mod N ` γN “ x` γN , still with γ an in-
teger in r0, ns. Therefore, the challenge was to correct
γ without leaving RNS representation.

The solution requires to reduce a bit the size of input
string, but it allows to avoid any comparison (and then
MRS-base extensions) at the end of the decryption. The
idea is to get only n´1 packets of r´1 bits, denoted by
px1, . . . , xn´1q, and to set the last residue to 0, i.e. xn “
0. That way, x is now an integer in r0,Mq and it is a
multiple of mn. This information allows us to efficiently
recover γ. Given adequate conditions on M relatively
to N , the nullity of xnp“ x mod mnq indicates that we
recover the original message. Otherwise, γ ‰ 0 and it
can be recovered by using the residue xn.

The function RnsModExppxpB,B1
skq
, eq involved in Alg.

6 and 7 is a modular exponentiation with exponent e.



8 Jean-Claude Bajard et al.

Algorithm 6 EncRSA_RNSpx1, x2, . . . , xn´1q

Require: pN “ p ˆ q, aq RSA pub. key; B,B1sk “

pB1,mskq, msk coprime with the mi’s, pn` 2q2N ă

M ď pmn ´ pn` 2qqN .
1: xpB,B1

skq
Ð Bexmrsppx1, . . . , xn´1, 0qB,B,B1skq

2: cpB,B1
skq
Ð RnsModExppxpB,B1

skq
, aq “ |xaM |N `αN

3: return cpB,B1
skq

Algorithm 7 DecRSA_RNSpcpB,B1
skq
q

Require: b RSA secret key.
1: x111

pB,B1
skq
Ð RnsModExppcpB,B1

skq
, bq “ |xM |N ` α

1N

2: xB Ð FastRnsMRpx111
pB,B1

skq
q “ x` γN

3: tÐ | ´ xnN
´1|mn

4: if t ě mn ´ pn` 2q then
5: tÐ t´mn

6: end if
7: xB Ð xB ` tN

8: return px1, . . . xn´1q

It uses the RNS Montgomery modular multiplication
as a basic step. Then, as for a classical positional ap-
proach the complexity of the exponentiation is related
to the exponentiation algorithm used (e.g. Montgomery
ladder, etc.) and to the way the exponent e is encoded
(binary, NAF (non adjacent form), etc.).

5.2 Elliptic Curve Cryptography and Pairings

5.2.1 Fast Implementations of ECC

One of the first efficient ECC implementations was done
by N. Guillermin [29]. He optimized an hardware archi-
tecture to compute scalar multiplications of points of
elliptic curves defined over a prime field Fp. The RNS
representation is used to speed up the computation
thanks to a wide parallelization. In his approach, the
conversion algorithms are optimized as much as possi-
ble by smartly precomputing all the values involved in
constant known parameters. An implementation on Al-
tera FPGA for some elliptic curves defined over differ-
ent finite fields for classical cryptographic security level
was proposed. This implementation uses resistant algo-
rithms against SPA (simple power analysis) attacks [38]
together with a leak resistant arithmetic (cf. Sec. 6.1)
which protects against DPA (differential power anal-
ysis) attacks [14]. The inherent parallelism of elliptic
curve operations allows to easily fill a large pipelines (6
stages). Furthermore, this architecture supports a high
clock frequency for the different curve sizes.

The same strategy can be used for GPU or multi-
core CPU implementations. In [1], the authors proposed
an implementation on an Nvidia 285 GTX GPU. It
deals with 224-bit underlying finite field Fp. The ex-
perimental results showed a maximum throughput of
9827 EC point multiplications per second and minimum
latency of 29.2ms, which was in 2012 one of the best ap-
proaches in terms of latency and throughput. They also
analysed the implementation on multi-core CPU (with
4 cores) by programming the algorithms with OpenCL.
Four cores were not enough to provide a sufficient paral-
lelism for a RNS approach but due to the burdensome
memory transfers between the CPU and the GPU, it
can be more interesting to execute the whole decryption
procedure on CPU. Thus, with the increasing number
of cores in current hardware platforms, the approach
could be more efficient on CPU.

Another implementation was done on FPGA in [26].
It improves Guillermin’s approach. The main idea is to
use three or four moduli of the form 2k ´ 2ti ´ 1, based
on the study on RNS bases given in [15], and six- and
four-stage of pipeline.

5.2.2 How to Accelerate ECC and Pairing

The main idea of this part was first given for ECC in [8].
It comes from the remark that, in RNS, additions and
multiplications are very cheap in time and area. More
precisely, this can be done, in time, at the cost of a ma-
chine word operation and, in area, with a linear func-
tion of the size of the prime p characterizing the finite
field. The drawback of RNS arithmetic comes from the
modular reduction which requires two base extensions.
So, interesting formulas for RNS arithmetic are mod-
ular sum of products

řt´1
i“0 Ai ˆ Bi mod p, where the

t multiplications-additions can be done before a single
final modular reduction. To apply this remark in the
context of ECC, some transformations must be done in
the addition and doubling point expressions.

In [7], authors gave a survey of a method dealing
with new formulas which are well adapted to the use
of the RNS arithmetic on elliptic curves. They opti-
mized formulas for basic operations arising in leak re-
sistant arithmetic on elliptic curves (unified addition,
Montgomery ladder) in order to minimize the number
of modular reductions. These two points were devel-
oped in this paper where, by reformulating addition
formulae on elliptic curves, some solutions which are
up to 30% better than the classical approaches, were
proposed. They dealt in particular with different ad-
dition formulas for elliptic curves: Hessian form [32],
Jacobi quartic [25, 35], short Weierstrass form [22, 23],
Montgomery form [31,38].



Montgomery Reduction within the Context of Residue Number System Arithmetic 9

Roughly speaking, the cost of a multiplication in a
classical representation can be compared to the one of a
modular reduction in RNS. Reciprocally, for some given
p, modular reduction is easy in a classical representa-
tion and can be estimated similar to a multiplication in
RNS. When looking at the Hessian form, Jacobi quar-
tic or short Weierstrass form, the original point addition
formulas are well adapted to RNS.

Curves Mult Mod Red
Hessian form 12 9
Jacobi quartic 12 10
Weierstrass form 18 14

For the Montgomery form, it is less clear, because
a modular multiplication is needed at each step of the
Montgomery ladder algorithm. But in [7] the authors
showed that it is possible to use a Montgomery lad-
der strategy on a short Weierstrass form by using some
results coming from the theory of Kummer varieties.
Thus, the formulas of addition and doubling have been
transformed. They obtained, for each step of the Mont-
gomery ladder algorithm for curves with small coeffi-
cients, 12 modular reductions compared to 17 multipli-
cations in classical representation.

The algorithms used for operating pairings are par-
ticularly welcome for this kind of “lazy reduction” ap-
proach. In [24], two FPGA-based high speed pairing
designs using RNS and lazy reduction were presented.
Lazy reduction in pairing computation was introduced
for classical arithmetic by Scott [46] and then general-
ized by Aranha et al. in [2]. The speed of pairing com-
putation in hardware is largely increased for hardware
implementations of optimal ate pairing at 126-bit secu-
rity level in 0.573 ms, which is 2 times faster than all
previous hardware implementations at the same secu-
rity level. Moreover, the first hardware pairing imple-
mentation at 192-bit security level was also reported.
In [51], the authors combined lazy reduction, Karat-
suba like formulas and optimal pipeline scheduling.

5.3 Lattices and Rounding-off

Besides cryptosystems based on finite field computa-
tion, the RNS Montgomery multiplier has been used in
the context of lattices, where many computations in-
volve operations on matrices and vectors. Thus, RNS is
a natural candidate for accelerating computations.

In [11, 12], solutions have been proposed for adapt-
ing Babai’s rounding-off [3] algorithm in RNS. Given
a (full-rank integer) lattice L “ r1Z ‘ . . . r`Z in R`
described by the (integer) matrix basis R (whose rows
are the ri’s), and given a target vector c, this operation

allows to compute a vector of the lattice L close to c.
The principle is to express c in the basis tr1, . . . , r`u, to
round-off the coordinates to the nearest integers, and
to come back in canonical basis of R`. To do it, one
computes RtR´1cs.

The problem of doing this operation into RNS is
then related to the computation of a rounding-off in
RNS. In others words, given two integers a, b (b ą 0),
the problem is to efficiently and exactly compute tab s,
where b is known in advance. The initial idea in [11] is
to rewrite the rounding-off as a formula involving only
integers and exact division:

Ya

b

U

“

Z

a

b
`

1

2

^

“
2a` b´ |2a` b|2b

2b
.

The exact division is doable in RNS. So, the bottle-
neck is the computation of the exact modular reduction
|2a ` b|2b. This can be performed by using the RNS
Montgomery modular reduction operator.

Since the reduction must be complete, a first solu-
tion in [11] consists in using Alg. 3. But the use of a
RNS to MRS conversion negatively impacts the perfor-
mance. In [12], another strategy is suggested. It allows
to compute the reduction by using the fastest modular
reduction algorithm (Alg. 2). The possible error due to
an incomplete reduction is corrected by introducing an
integer γ. The key idea is based on the equality

tγ ab u “ γtab s` tγ rasbb s

where rasb is the remainder of amodulo b in r´b{2, b{2q.
And the quantity tγ ab u is approximated by a flooring:

X

γ ab
\

“
X

γ ab
T

´ e, e P t0, 1u .

The flooring is performed in RNS through the formula
γa´|γa|b

b . Then, |γa|b is given by Alg. 2, plus a possible
error e1 ă n. Finally, one can easily compute, in RNS,
γ
X

a
b

T

` E, with E “ tγ rasbb s´ e´ e1.
At this point, correcting E is easily done by using

the residue modulo γ if γ is large enough so that γ{2 ą
E. Under this condition, one can access rEsγ “ E, and
correct the rounding. A last exact division by γ allows
to recover tab s. The procedure is given by Alg. 8.

For the matter of efficiency, γ should not be larger
than other moduli, so that the computations for the
purpose of correction, which are made modulo γ, are
performed with a cheap cost. Formally, the size of γ
depends on n (i.e. the cardinality of main base RNS B)
and on the gap ε “ 1

2´|
rasb
b |. These values should verify

γε ě n` 1
2 . Consequently, such correction technique is

optimal when 1
2 ´ |

rasb
b | „ n2´r.



10 Jean-Claude Bajard et al.

Algorithm 8 ExactRNSRoundOffpa, bq

Require: residues apB,B1
skq

of a in pB,B1skq (b fixed)
Ensure: residues s̃pB,B1

skq
of tab s in pB,B1skq

1: rpB,B1
sk,γq

Ð FastRnsMRpγ|M |ba, b,B, pB1sk, γqq
2: spB,B1

sk,γq
Ð pγapB,B1

sk,γq
´ rpB,B1

sk,γq
q ¨ b´1

Ź ‖ in pB,B1sk, γq
3: s̃γ Ð rsγsγ Ź “centered” residue in r´γ{2, γ{2q
4: s̃pB,B1

skq
Ð pspB,B1

skq
´ s̃γq ¨ γ

´1 Ź ‖ in pB,B1skq
5: return s̃pB,B1

skq

6 RNS Montgomery Reduction Against
Side-channel Analysis and Fault Attacks

Beyond computational efficiency, the alliance RNS and
Montgomery reduction has been fruitful for the emer-
gence of practical solutions for defeating side-channel
analysis and fault attacks. In particular, RNS Mont-
gomery reduction is a core operation for creating a leak
resistant arithmetic, and an arithmetic robust to fault
attacks too.

6.1 Leak Resistant Arithmetic

RNS Montgomery multiplier owns an interesting prop-
erty for the purpose of protection against side-channel
attacks, namely the Montgomery representation. Given
the main base B involved in RNS reduction, any data
to be handled in the context of computations in Fp for
instance has to be pre-multiplied by |M |p.

In order to counteract side-channel attacks such as
analysis of electromagnetic leakage, in [14] the authors
suggested to randomize the choice of Bα. Thus, the fac-
tor |M |p would act as a random mask. In practice, the
base Bα is chosen by picking up n moduli in a pool
of 2n pairwise coprime integers tm1, . . . ,m2nu. The re-
maining moduli are used to create B1α. By proceeding
like that,

`

2n
n

˘

„ 22n?
πn

masks are available. To make
this principle more interesting, the authors had to find
an efficient way to re-randomize Bα on-the-fly during a
modular exponentiation.

Let M be the product of all moduli
ś2n
i“1mi. Let

Mα denote a product choice of n random moduli for Bα,
M 1
α “M{Mα be the product of the remaining nmoduli

of B1α, and ditto withMβ ,M 1
β corresponding to another

random choice. The challenge was to switch, efficiently,
between the RNS representation of |xMα|p in pBα,B1αq
and the one of |xMβ |p in pBβ ,B1βq. The technique relies
on the fact that M “MαM

1
α “MβM

1
β .

Given |xMα|p in pBα,B1αq, the first step is a Mont-
gomery multiplication by M with Bα as the main base,
which provides a value congruent to |xMαMM´1

α |p “

|xM|p. The second step consists in applying a Mont-
gomery reduction with B1β as the main base. Thus, this
enables to obtain |xMpM 1

βq
´1|p “ |xMβ |p.

This leak resistant arithmetic has been optimized,
implemented and tested in practice in several works
[30, 39, 42, 43]. It contributes to make RNS, together
with Montgomery reduction, a candidate for secure and
efficient finite field arithmetic.

Algorithm 9 On-the-fly RNS Montgomery represen-
tation switching

Require: a random couple of n-moduli bases pBα,B1αq,
pBβ ,B1βq among tm1, . . . ,m2nu, M “

ś2n
i“1mi;

residues of |xMα|p in pBα,B1αq.
Ensure: residues of |xMβ |p in pBβ ,B1βq.
1: ypBα,B1

αq
Ð RnsMRp|xM |p ˆM,Bα,B1αq

Ź y ” xM mod p

2: zpB1
β ,Bβq Ð RnsMRpy,B1β ,Bβq

Ź z ” xMβ mod p

3: return zpBβ ,B1
βq

6.2 RNS Montgomery Reduction for Defeating Fault
Attacks

Besides side-channel analysis, fault attacks are another
serious threat to any device embedding a cryptographic
primitive. One of the most famous attack, the Bellcore
attack, was performed on CRT-RSA signature scheme
[21], allowing to recover the RSA factorisation thanks
to hardware faults. Since then, many fault attacks have
been discovered against various schemes (ECC, pair-
ings, etc [19, 41, 50]), and protecting embedded cryp-
tosystems against faults is of the highest importance.

RNS is a good fit for providing a fault resistant
arithmetic. This is because the information is divided
up through the residues, which are processed in distinct
hardware units (cf. Cox-Rower architecture). Further-
more, redundancy can be easily added by introducing
extra moduli. For instance, adding k redundant moduli
ri to a base B enables to detect up to k faults as long
as the redundant moduli are greater to the mi’s. The
principle is very similar to error correcting code. Here,
a codeword is a set of residues pxB,xRq (R is the re-
dundant base), such that the integer x it represents lies
in the “legitimate” range r0,Mq. It means that there is
a “consistency” between xB and xR, or again that xR
is a truly redundant information of xB. The detection
process consists in an exact base extension from B to
R in order to check this consistency.



Montgomery Reduction within the Context of Residue Number System Arithmetic 11

Such redundant RNS works as long as the consis-
tency check is performed after “standard” RNS oper-
ations, i.e. parallel additions, subtractions, multiplica-
tions. Indeed, the independence of residues is required
in order to avoid any propagation of a fault, and to pre-
serve consistency for codewords. By consequence, the
principle of redundant RNS Montgomery reduction was
quite contradictory at a first sight.

In 2013 [9] and 2016 [10], it has been shown that
RNS Montgomery reduction can be efficiently adapted
to redundant RNS. For implementing such a redundant
RNS Montgomery-based modular arithmetic, any kind
of algorithm among Alg. 1, Alg. 2 or Alg. 4 can be
used, making the approach flexible. In [10], Alg. 4 was
preferred because an adequate architecture, based on
Cox-Rower, was proposed.

In any kind of approach, it can be shown that the
structure of the RNS Montgomery reduction algorithm
allows to keep the consistency very straightforwardly by
adding a redundant baseR besides B and B1. Hence, the
second (exact) base extension can be used to perform
the consistency check. During the whole modular reduc-
tion, the computations in R run completely in parallel
(in particular, during the base extensions, R is not a
part of the input base, but only of the output). Thus,
as soon as enough area is available for R on the device,
the computational time is not impacted by the fault de-
tection features. The principle of an RNS Montgomery
reduction is summarized in Alg. 10.

The fault detection process described here has also
the advantage that it is compliant with a leak resis-
tant arithmetic. Indeed, the on-the-fly switching be-
tween Montgomery representations (cf. Alg. 9) can be
performed by using Alg. 10. The redundant base R
stays the same all along the process.

Algorithm 10 RedundantRnsMRpxpB,B1,Rq, p,B,B1,Rq

Require: coprime RNS bases B, B1, R, with rj ą

mi,m
1
i, x ă Mp, p2 ` λqp ă M 1 with λ ě 0 re-

lated to Bex1 (cf. Alg. 1).
Ensure: spB,B1,Rq, s ” xM´1 mod p if no fault is de-

tected.
1: qB Ð

ˇ

ˇ´xp´1
ˇ

ˇ

M
Ź ‖ in B

2: pqB1 Ð Bex1pqB,B, pB1,Rqq
3: tpB1,Rq Ð |x` pqp|M 1R Ź ‖ in pB1,Rq
4: spB1,Rq Ð

ˇ

ˇtM´1
ˇ

ˇ

M 1R
Ź ‖ in pB1,Rq

5: psB, psRq Ð Bex2psB1 ,B1, pB,Rqq Ź exact extension
6: if sR ‰ psR then
7: return “Corrupted data; abort”
8: else
9: return spB,B1,Rq

10: end if

7 Conclusion

Peter L. Montgomery’s reduction algorithm has offered
a beautiful and useful tool for RNS arithmetic. Adapt-
ing it to this particular number system has been rich
in terms of application. Initially, it was applied to the
classical RSA cryptographic approach, but soon it was
intensively used for ECC or Pairings.

Nowadays within the post-quantum era, some appli-
cations to lattice-based crypto-systems have been pro-
posed. For instance, RNS are used for accelerating com-
putations in algebraic structures which are useful for
schemes based on the Ring-Learning With Errors prob-
lems [34, 36]. In a recent work, the RNS Montgomery
reduction helps for designing a full RNS somewhat ho-
momorphic encryption scheme [4]. To conclude, Mont-
gomery’s reduction is a powerful operator which is still
at the heart of contemporary research works in the do-
main of applied cryptography.

References

1. S. Antao, J.-C. Bajard, and L. Sousa. RNS-Based Ellip-
tic Curve Point Multiplication for Massive Parallel Architec-
tures. The Computer Journal, 55(5), 2012.

2. D. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and
J. Lopez. Faster explicit formulas for computing pairings
over ordinary curves. In EUROCRYPT Advances in Cryp-
tology, vol. 6632 of LNCS, 2011.

3. L. Babai. On Lovász’ lattice reduction and the nearest lattice
point problem. Combinatorica, 6(1), 1986.

4. J.-C. Bajard, J. Eynard, A. Hasan, and V. Zucca. A Full
RNS Variant of FV like Somewhat Homomorphic Encryption
Schemes. In SAC: The 23rd Conference on Selected Areas
in Cryptography, 2016.

5. J.-C. Bajard, L.-S. Didier, and P. Kornerup. An RNS Mont-
gomery Modular Multiplication Algorithm. IEEE Transac-
tions on Computers, 47(7), 1998.

6. J.-C. Bajard, L.-S. Didier, and P. Kornerup. Modular multi-
plication and base extensions in residue number systems. In
ARITH: 15th IEEE Symposium on Computer Arithmetic,
2001.

7. J.-C. Bajard, S. Duquesne, and M. Ercegovac. Combining
leak-resistant arithmetic for elliptic curves defined over Fp.
Pub. Math. de Besançon. Algèbre et Théorie des Nombres,
2013.

8. J.-C. Bajard, S. Duquesne, M. Ercegovac, and N. Meloni.
Residue systems efficiency for modular products summation:
Application to Elliptic Curves Cryptography. In Proceedings
of SPIE Optics & Photonics Symposium, vol. 6313, 2006.

9. J.-C. Bajard, J. Eynard, and F. Gandino. Fault Detection in
RNS Montgomery Modular Multiplication. In ARITH: 21st
IEEE Symposium on Computer Arithmetic, 2013.

10. J.-C. Bajard, J. Eynard, and N. Merkiche. Multi-fault Attack
Detection for RNS Cryptographic Architecture. In ARITH:
23rd IEEE Symposium on Computer Arithmetic, 2016.

11. J.-C. Bajard, J. Eynard, N. Merkiche, and T. Plantard.
Babai Round-Off CVP method in RNS, Application to Lat-
tice based cryptographic protocols. In ISIC: IEEE Intern.
Symposium on Integrated Circuits, 2014.



12 Jean-Claude Bajard et al.

12. J.-C. Bajard, J. Eynard, N. Merkiche, and T. Plantard. RNS
Arithmetic Approach in Lattice-Based Cryptography: Ac-
celerating the "Rounding-off" Core Procedure. In ARITH:
IEEE 22nd Symposium on Computer Arithmetic, 2015.

13. J.-C. Bajard and L. Imbert. A full RNS implementation of
RSA. IEEE Transactions on Computers, 53(6), 2004.

14. J.-C. Bajard, L. Imbert, P.Y. Liardet, and Y. Teglia. Leak
Resistant Arithmetic. In CHES: Cryptographic Hardware
and Embedded Systems, vol. 3156 of LNCS, 2004.

15. J.-C. Bajard, M. E. Kaihara, and T. Plantard. Selected RNS
Bases for Modular Multiplication. In ARITH: 19th IEEE
Symposium on Computer Arithmetic, 2009.

16. J.-C. Bajard, N. Meloni, and T. Plantard. Efficient RNS
Bases for Cryptography. In IMACS: Scientific Computa-
tionApplied Mathematics and Simulation, 2005.

17. J.-C. Bajard and N. Merkiche. Double Level Montgomery
Cox-Rower Architecture, New Bounds. In CARDIS: 13th
Smart Card Research and Advanced Application Conference,
vol. 8968 of LNCS, 2014.

18. P. Barrett. Implementing the Rivest Shamir and Adleman
Public Key Encryption Algorithm on a Standard Digital Sig-
nal Processor. In Advances in Cryptology - CRYPTO, 1987.

19. I. Biehl, B. Meyer, and V. Müller. Differential Fault Attacks
on Elliptic Curve Cryptosystems. In CRYPTO : Advances
in Cryptology, vol. 1880 of LNCS, 2000.

20. K. Bigou and A. Tisserand. Single Base Modular Multiplica-
tion for Efficient Hardware RNS Implementations of ECC.
In CHES: 17th International Workshop on Cryptographic
Hardware and Embedded Systems, vol. 9293 of LNCS, 2015.

21. D. Boneh, R.A. DeMillo, and R.J. Lipton. On the Impor-
tance of Checking Cryptographic Protocols for Faults. In
EUROCRYPT: Intern. Conf. on the Theory and Applica-
tion of Cryptographic Techniques, vol. 1233 of LNCS, 1997.

22. E. Brier and M. Joye. Weierstraß Elliptic Curves and Side-
Channel Attacks. In PKC: 5th International Workshop on
Practice and Theory in Public Key Cryptosystems, vol. 2274
of LNCS, 2002.

23. E. Brier and M. Joye. Fast point multiplication on ellip-
tic curves through isogenies. In AAECC : 15th Interna-
tional Symposium, Applied Algebra, Algebraic Algorithms
and Error-Correcting, vol. 2643 of LNCS, 2003.

24. R.C.C. Cheung, S. Duquesne, J. Fan, N. Guillermin s, I. Ver-
bauwhede, and G.X. Yao. FPGA Implementation of Pair-
ings Using Residue Number System and Lazy Reduction.
In CHES: 13th International Conference on Cryptographic
Hardware and Embedded Systems, vol. 6917 of LNCS, 2011.

25. S. Duquesne. Improving the Arithmetic of Elliptic Curves in
the Jacobi Model. Inf. Process. Lett., 104(3), 2007.

26. M. Esmaeildoust, D. Schinianakis, H. Javashi, T. Stouraitis,
and K. Navi. Efficient RNS Implementation of Elliptic Curve
Point Multiplication Over GF(p). IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 21(8), 2013.

27. H.L. Garner. The Residue Number System. InWestern Joint
Computer Conference, IRE-AIEE-ACM ’59 (Western), 1959.

28. B. Gérard, J. G. Kammerer, and N. Merkiche. Contributions
to the Design of Residue Number System Architectures. In
ARITH: IEEE 22nd Symp. on Computer Arithmetic, 2015.

29. N. Guillermin. A High Speed Coprocessor for Elliptic Curve
Scalar Multiplications over Fp. In CHES: 12th International
WorkshopCryptographic Hardware and Embedded Systems,
vol. 6225 of LNCS, 2010.

30. N. Guillermin. A Coprocessor for Secure and High Speed
Modular Arithmetic. Technical report, Cryptology ePrint
Archive, Report 2011/354, 2011.

31. I. Izu and T. Takagi. A Fast Parallel Elliptic Curve Multipli-
cation Resistant against Side Channel Attacks. In PKC: 5th
International Workshop on Practice and Theory in Public
Key Cryptosystems, vol. 2274 of LNCS, 2002.

32. M. Joye and J.-J. Quisquater. Hessian Elliptic Curves and
Side-Channel Attacks. In CHES: Third International Work-
shop on Cryptographic Hardware and Embedded Systems,
vol. 2162 of LNCS, 2001.

33. S. Kawamura, M. Koike, F. Sano, and A. Shimbo. Cox-Rower
Architecture for Fast Parallel Montgomery Multiplication. In
EUROCRYPT : 19th International Conference on Theory
and Application of Cryptographic Techniques, 2000.

34. T. Lepoint and M. Naehrig. A Comparison of the Ho-
momorphic Encryption Schemes FV and YASHE. In
AFRICACRYPT, vol. 8469 of LNCS, 2014.

35. P.-Y. Liardet and N. Smart. Preventing SPA/DPA in ECC
Systems Using the Jacobi Form. In CHES: Third Interna-
tional Workshop on Cryptographic Hardware and Embedded
Systems, vol. 2162 of LNCS, 2001.

36. C. Aguilar Melchor, J. Barrier, S. Guelton, A. Guinet, M.O.
Killijian, and T. Lepoint. NFLlib: NTT-Based Fast Lattice
Library. In CT-RSA, vol. 9610 of LNCS, pages 341–356,
2016.

37. P.L. Montgomery. Modular Multiplication without Trial Di-
vision. Math. of Computation, 44(170), 1985.

38. P.L. Montgomery. Speeding the Pollard and Elliptic Curve
Methods of Factorization. Mathematics of Computation,
48(177), 1987.

39. C. Negre and G. Perin. Trade-Off Approaches for Leak Re-
sistant Modular Arithmetic in RNS. In ACISP: Informa-
tion Security and Privacy: 20th Australasian Conference,
vol. 9144 of LNCS, 2015.

40. H. Nozaki, M. Motoyama, A. Shimbo, and S.i Kawamura.
Implementation of RSA Algorithm Based on RNS Mont-
gomery Multiplication. In CHES: Third International Work-
shop Cryptographic Hardware and Embedded Systems, vol.
2162 of LNCS, 2001.

41. D. Page and F. Vercauteren. A Fault Attack on Pairing-
Based Cryptography. IEEE Transactions on Computers,
55(9), 2006.

42. G. Perin, L. Imbert, P. Maurine, and L. Torres. Vertical
and horizontal correlation attacks on RNS-based exponenti-
ations. Journal of Cryptographic Engineering, 5(3), 2015.

43. G. Perin, L. Imbert, L. Torres, and P. Maurine. Practi-
cal Analysis of RSA Countermeasures Against Side-Channel
Electromagnetic Attacks. In CARDIS : 12th International
Conference Smart Card Research and Advanced Applica-
tions, vol. 8419 of LNCS, 2013.

44. K.C. Posch and R. Posch. Base Extension Using a Convo-
lution Sum in Residue Number Systems. Computing, 50(2),
1993.

45. K.C. Posch and R. Posch. Modulo Reduction in Residue
Number Systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 6(5), 1995.

46. M. Scott. Implementing Cryptographic Pairings. In Pairing-
Based Cryptography - Pairing 2007, vol. 4575 of LNCS, 2007.

47. P. P. Shenoy and R. Kumaresan. Fast Base Extension Us-
ing a Redundant Modulus in RNS. IEEE Transactions on
Computers, 38(2), 1989.

48. A. Svoboda and M. Valach. Operátorové obvody (Opera-
tional circuits). In Strojena Zpracování Informací (Informa-
tion Processing Machines), vol. 3. Sbornik, 1955.

49. N. Szabó and R. Tanaka. Residue Arithmetic and its Ap-
plications to Computer Technology. McGraw-Hill, 1967.

50. C. Whelan and M. Scott. The Importance of the Final Ex-
ponentiation in Pairings When Considering Fault Attacks.
In Pairing: Pairing-Based Cryptography, vol. 4575 of LNCS,
2007.

51. G. X. Yao, J. Fan, R. C. C. Cheung, and I. Verbauwhede.
Faster Pairing Coprocessor Architecture. In Pairing: 5th
International Conference Pairing-Based Cryptography, vol.
7708 of LNCS, 2012.


	Introduction
	Residue Number Systems and Modular Arithmetic
	Main Variants of RNS Montgomery Reduction
	Towards Efficient Embedded Hardware Implementations
	Applications of RNS to Asymmetric Cryptography
	RNS Montgomery Reduction Against Side-channel Analysis and Fault Attacks
	Conclusion

